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Abstract—Pedestrian motion model is a research focus, 

involving a variety of realistic scenarios, such as transportation 

hub, shopping mall construction and evacuation, urban 

planning and large-scale event risk prevention. Its related 

multi-disciplines include physics, mathematics, psychology and 

management. The uncertainty of motion from pedestrian 

autonomy and complexity of real life scenes make it difficult to 

quantitatively calculate the movement of pedestrian, which 

limits our ability to establish pedestrian movement model. In 

current, there is not any universal model for describing 

pedestrian movement and for describing the impact of 

environment and pedestrian psychology on pedestrian 

movement. In paper, I use the theory of probability field and 

probabilistic projection space to establish a theoretical model 

of pedestrian movement in scenes with obstacles and 

destinations and to predict the destinations of pedestrians. 

Experimental results of a realistic scene verified that this 

model can accurately predict the destinations of pedestrians in 

general scenarios. I expect this descriptive model of pedestrian 

movement in complex space based on the theory of probability 

field and probability projection space can play a guiding role 

in calculation pedestrian motion and pedestrian management. 

Keywords—Pedestrian Dynamic, Probability field, 

Probabilistic Projection Space, Field Theory, Prediction, 

Destination 

I. INTRODUCTION 

In many scenes of real life, we often need to calculate 
and analyze the movement and choice of pedestrians. 
Especially in large transport hubs, such as airports, subway 
stations and railway stations, the choice and movement of 
pedestrians are directly related to the safety of transport hubs. 
Pedestrian dynamic is a discipline describing the movement 
of pedestrians, involving physics, mathematics, psychology 
and management[1,2]. The uncertainty of pedestrians' 
independent choices, the complexity of real scenes, the time-
varying environments and the complexity of interaction 
mechanics between pedestrians make it difficult for us to 
quantitatively calculate and predict pedestrians' motion[2,3]. 
Social force model[4,5,6], cellular automata model[7,8,9], 
discrete choice model[10,11], magnetic force model[12,13,14] and 
hydrodynamic model[15,16,17] are several existing pedestrian 
dynamics models, which can describe the characteristics of 
pedestrian movement to some extent or in specific scenarios, 
cannot consider the uncertainty of pedestrian self-selection 
and the rules of interaction between pedestrians, so the 
description of pedestrian movement in general scenarios is 
still not applicable. In addition, unlike fluids, 
electromagnetic objects and flocks, pedestrians have 

complex psychological activities[18,19,20,21,22]. At present, there 
is no basic model that can well import pedestrians' 
psychological activities into the dynamic model, which 
makes the assumptions of pedestrian dynamics do not fit 
well with the actual scenes. Therefore, the dynamic 
description of pedestrian motion is still a formidable 
challenge. 

In order to accurately describe the motion model of 
pedestrians in general scenarios and establish the pedestrian 
stochastic dynamics model, I proposed the theory of 
probability field and probability projection space based on 
probability theory, geometric mapping and field theory. I use 
probabilistic projection space to describe pedestrian's motion 
selection in scenes, and establish a theoretical model of 
pedestrian's probabilistic projection space. Utilizing the 
concepts of probability field and probability projection space, 
the influence of obstacles and destination on pedestrian 
motion is established.  In order to verify the feasibility and 
practicability of the model proposed in the paper, I have 
carried out experiments in a realistic scene to predict the 
destinations of  the pedestrians. By comparing the predicted 
results calculated by the model proposed in the paper and the  
realistic results, the feasibility and applicability of the 
proposed model for describing pedestrian motion in complex 
scene with obstacles and destination based on probabilistic 
projection space are illustrated. 

The paper is constructed as follows. In Section II, I 
introduce the theory of probability field and probabilistic 
projection space, which is proposed by the author of this 
paper. In Section III, I establish a model of probabilistic 
projection space for a single pedestrian in space.  In Section 
IV, I verify the practicality and accuracy of model to predict 
the destinations of pedestrians through experiments. 

II. THEORY OF PROBABILITY FIELD AND PROBABILISTIC 

PROJECTION SPACE 

In order to facilitate the establishment of pedestrian 
dynamics model, this section will briefly introduce the 
probability field and probabilistic projection space theory 
proposed by the author. The theory of probability field and 
probabilistic projection space originates from the 
combination and innovation of probability theory, space 
geometry and field theory[23,24,25] aimed at describing the 
complex stochastic process of many kinds of fields with 
probability theory and field theory. This theory proposes a 
more universal model for the stochastic process analysis of 
various complex stochastic systems such as the flow field, 
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the electromagnetic field and the gravitational field. The 
research in this paper is an application of the theory of 
probability field and probabilistic projection space in 
pedestrian dynamics model. 

A. Theory of Probability field 

The definition of probability field is as Definition 1. 

Definition 1. Assuming the aggregate of a region is  U , 

the probability density function of  x U  is  ( )f x , and the 

probability density function ( )f x   meets that ( ) 1
x U

f x dx


 . 

If the probability density of some region A  in the aggregate 
U   is limited or adjusted, the probability density distribution 

of the aggregate U  will be changed. The region aggregate 

U  and probability density function ( )f x  satisfying this 

property constitute a continuous probability space marked as  

 , ( )Z U f x  in this paper, which can be defined as a 

continuous probability field about U  and ( )f x . 

The probability field has following properties. 

Property 1. The probability sum in aggregate U  is 1 . 

Property 2. The existence of a certain factor will cause 
the probability of some parts of the aggregate to change. 
There are two factors causing the change: boundary 
conditions and Disturbance. 

Property 3. If the probability of a part changes, the 
probability of the other part will change correspondingly, 
that is, there is a certain coupling relationship within the 
probability field. 

Property 4. The basic elements of a probability field are 
the set of value regions and the corresponding probability 
density function or probability, that is, the probability field is 
uniquely determined by the set of value regions and the 
probability distribution. 

About probability field, I have defined two factors based 
on the properties of field theory that is the boundary 
condition as Definition 2 and disturbance as Definition 3. 

Definition 2. The probability distribution of the 
probability field will be affected by a certain restriction on 
the value region of probability field. This restriction on the 
value region is called the boundary condition of the 
probability field. 

Definition 3. The probability distribution of a probability 
field will be affected if the probability of some region is 
limited. Such a restriction on the probability of some regions 
is called the disturbance of probability field. 

A typical boundary condition that is fixed boundary 
condition is defined as Definition 4. 

Definition 4. When the region corresponding to the 
boundary condition remains unchanged, if the original 
random distribution remains unchanged when the n -th 

experiment falls outside the valid region limited by the 
boundary condition, the experiment will continue until it falls 
within the valid region limited by the boundary condition. 
Such boundary conditions are called fixed boundary 
conditions. 

Then, the fixed boundary condition satisfies Theorem 1. 

Theorem 1. For an arbitrary probability field  ( , )Z U F , 

the relation between it and the new probability field 

( , )D

AZ U F   generated by adding a fixed boundary condition 

with region A  is as 

( )

( )
( , ) ,

( )

D

A

x U A

F x
Z U F Z U A

F x
 

 
 

  
 
 


. (1) 

B. Theory of Probability field 

Mapping of probability field can be defined as 

Definition 5. Mapping refers to the corresponding 
relationship between two aggregates of elements. It refers to 

the correspondence f  between two non-empty aggregates 

A  and B . For each element x  in A , there is always a 

unique element y in B  that corresponds to it. This 

correspondence is called a mapping from A  to B , which is 

denoted by :f A B . When the element of aggregate A   

and the element of aggregate B  are probability fields, the 
mapping relation is called the mapping of probability fields. 
For the element x  in the aggregate, another probability field 

y  will be generated after mapping. If the elements of a non-

empty aggregate A  are all probability fields, such a set is 
called an aggregate of probability fields. 

Then, probabilistic projection space can be defined as 
Definition 6. 

Definition 6. If the original image in an aggregate A  is 
one-to-one with the image in the mapping aggregate B , 

where :f A B  and the probability field of the original 

image in A  is  , ( )Z A g x , then the probability field of the 

image of mapped in B  is   1 1, ( ) ( )Z B f x g f x  . 

Conversely, if the probability field of the image of mapped in 

B  is  , ( )Z B h x , then the probability field of the original 

image in A  is    , ( ) ( )Z A f x h f x . This space containing 

the probability field of original image and the probability 
field of mapping image can be called a probabilistic 
projection space. 

The probabilistic projection space satisfies Theorem 1 
that can be called Projection Flux Theorem of Probability 
Field. 

Theorem 2. If the original image in an aggregate A  and 
the image in its mapping aggregate B  satisfy the relation  

:f A B , where the probability field in the original image 

is  , ( )AZ A f x , and the probability field in the projection 

space is  , ( )BZ B f x . If any region 1A   in the original image 

space is projected to the image space as the region  1B , then 

the following relationship is true. 

1 1

( ) ( )A B

A B

f x dx f x dx    (2) 

The probabilistic projection vector which can show the 
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probabilistic intensity of a point in probabilistic projection 
space can be defined as Definition 7. 

Definition 7. The vector composed of the projection 
direction and the corresponding probability intensity of a 
point in the probability field projection space is called the 
probabilistic projection vector. A n dimensional probabilistic 

projection space 
n

 can be represented by its probabilistic 

projection vector as ( , )  E  where   is the range of 

values in probabilistic projection space and E  is the vector 
function of probabilistic projection vector. 

Three types boundary conditions probabilistic projection 
space that is probabilistic generator, probabilistic absorber 
and probabilistic insulator can be defined as Definition 8. 

Definition 8. If an object can project a probabilistic 
projection vectors, it is called  probabilistic generator. If the 
probabilistic projection cannot be projected on a certain 
object in a probabilistic projection space, which means the 
probability flux of the projection vector reaching the object is 
0. Since the projection vector cannot pass through any 
surface of the object, the projection vector on the surface of 
the object will be parallel to the surface of the object. 
Similarly, the probabilistic projection space will be affected 
if the probability field of an object's surface absorption is 
given when a certain probability is required. Because it 
absorbs some probability, the probability vector on its 
surface is always perpendicular to its surface. Such an object 
is called a probability absorber. 

The factors of probability projection space have the 
theorem as Theorem 3. 

Theorem 3. If the probability generator, probability 
receiver, boundary condition, disturbance and space shape 
change in the probabilistic projection space, the probabilistic 
projection vector in the space will change. In space, any 
closed curve containing all probabilistic generators is a 
probability field and the flux of probabilistic projection 
vector at a point on the curvy is the probability density of a 
probability field. 

For a translational probabilistic generator, the probability 
distribution of a certain probability field will change with the 
movement of the probabilistic generator in the probabilistic 
projection space. And then, time probability field can be 
obtained as Definition 9. 

Definition 9. If the probability field  ( , )Z U F  varies with 

time, that is, the probability field contains variables of time, 
then the probability field is called the probability field of 
time domain. The expression of the probability field for a 

time series is   ( ), ( , )Z U t F x t . 

III. MODEL OF PROBABILISTIC PROJECTION SPACE FOR SINGLE 

PEDESTRIAN IN SPACE 

Based on the theory of probability field and probability 
projection space, we can regard a pedestrian in planar space 
as a movable probability generator that can project the 
probability projection vector with probability of 1 . The 
direction of the probabilistic projection vector is the 
pedestrian's walking path, and the size of the probability 
projection vector is the probability intensity of the 
pedestrian's walking. In addition, the probability projection 
space generated by pedestrians will change with the 

movement of pedestrians. 

It can be assumed that a pedestrian is a circular with a 
certain radius r  in planar space. In an infinite planar space 
without any restriction of environmental factors, the 
probability projection space of a pedestrian without 

subjective consciousness at point  ( ) ( ), ( )P t x t y t  at time 

t  which has to move all the time is a uniformly divergent 

probability projection space as 

  22 , / 2AA    E PA PA  whose diagram is as Fig. 

1. It can be known that the  equal probability curvy of 

  22 , / 2AA    E PA PA  is circles centered on P . 

  

Fig. 1. Diagram of the probabilistic  

projection space  that is 

2

2
,

2
AA



 
    
 

PA
E

PA
. 

Fig. 2. Diagram of the probabilistic 

projection space with two infinite 

parallel obstacles y l  and 

y l  . 

Based on this, I will model the movement of pedestrians 
in space. 

A. Probabilistic projection space model of single pedestrian 

in space with obstacles 

In order to research the effect of the space environments 
on the motion of pedestrian, I set obstacles in the space 
where  pedestrians are located. 

In planar space, an obstacle whose surface is S  can be 

regarded as a probabilistic insulator, where the probabilistic 
projection vector cannot pass through it. 

It can be known ( , )x y  .st   ( , ) ( , )grad x y x y  E  

where ( )grad   is the gradient of  . Then in the 

probabilistic projection space,   must satisfy 

( , ) 0x y     (3) 

where 2( , )x y  . On the surface of obstacle S ,   

must satisfy 

( , )
0

S

x y


n
   (4) 

where ( , )x y S  and Sn  is the normal vector of surface 

S . For any closed curves arbitrarily containing all of the 

probabilistic generators,   must satisfy 
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( , )
sum

CC

x y
P




 n
  (5) 

where Cn  is the normal vector outward of C  and sumP  is 

the sum of the probabilities of all probability generators. 
Based on Eq. 3, Eq. 4 and Eq. 5, we can get the probabilistic 
projection vector of the pedestrian in a planar space with 
obstacles. For example, we can get the diagram of the 
probabilistic projection space and the probabilistic projection 
vector of the pedestrian in a space with two infinite obstacles 
as Fig. 2,  Fig. 3 and Fig. 4. 

  

Fig. 3. Three dimensional diagram 

of probability density of the 

probability field on x const   

for 0 const    and 1l    

in probabilistic projection space. 

2 2x   , 1 1y    and 

z  is the probability intensity of 

probability field. 

Fig. 4. Three dimensional diagram of 

probability density of the probability 

field on y const  for 

0 const l   and 1l    in 

probabilistic projection space. 

2 2x   , 1 1y    and z  

is the probability intensity of 

probability field. 

B. Probabilistic projection space model of single pedestrian 

with destination 

In order to research the effect of the space environments 
on the motion of pedestrian, I set destinations for the single 
pedestrian. Destinations can be regarded as a subjective 
consciousness of pedestrian, which is an origin of 
pedestrians' psychological factors. 

In planar space, a destination whose surface is D  can be 
regarded as a probabilistic absorber, which forces the 
absorption probabilistic projection vector so that the 
probability on its surface equals its own probability intensity. 

A destination that is a probabilistic absorber in 
probabilistic projection space will produce probabilistic 
projection vectors pointing at it which will change the 
original probability space of pedestrian. For any closed 
curves arbitrarily containing all destinations,   must satisfy 

( , )
sum

CC

x y
P


 

 n
  (6) 

where Cn  is the normal vector outward of C  and sumP  is 

the sum of the probabilities of all destinations. According to 
the probability superposition property of destinations, we can 
get the following theorem about destinations. 

Theorem 4. Assuming there is n  absorptions whose 

probability intensity is i  where *i , [1, ]i n  and 

1
1

n

ii



 ,  and assuming the probabilistic projection space 

generated by the i -th absorbers is  *, i E  when the 

probability intensity of each absorbers is 1 , then the 
probabilistic projection space of n  absorbers is 

 *

1
,

n

i ii



  E . 

For a point destination D  without any environmental 
conditions which can be regard as a circular with  a certain 
radius r  in planar space, the probabilistic projection space 
generated by D  is also a uniformly divergent probability 

projection space as   2 2, / 2 | |AA    E AD AD  

pointing to D  whose diagram is as Fig. 5. 

 

Fig. 5. Diagram of the probabilistic  

projection space 

2

2
,

2
AA



 
    
 

AD
E

AD
. 

 

Fig. 6. Diagram of the probabilistic  

projection space  2 , AA   E  

and 
2 2

1

4
A



 
  

 

AD PA
E

AD PA
. 

For destination with complex shape, the probabilistic 
projection space generated by it can be seen as the vector 
superposition of probabilistic projection vectors formed by 
infinite points in its surface region. It can be set that the 
surface region D  of destination whose probability intensity 

is DP  can be evenly decomposed into n points where 

n   and each point's probability intensity is /DP n . 

When the probabilistic projection vector at point A  of i -th 

point iK  is set as ( )i AE , then i  .st  

 ( ) ( )i igrad A A  E  for 
2A  . Thus, i  must satisfy 

Eq. 3, Eq. 7 and Eq. 8. 

( , ) D

CC

Px y

n


 

 n
  (7) 

where Cn  is the normal vector outward of any closed 

curves C  arbitrarily containing i -th point. 

( , )
0

iDC

x y


 n
   (8) 

where ( , ) i ix y D K D    and 
iDn  is the normal vector 

of surface iD . 

Therefore, we can get that the probabilistic projection 

space whose probabilistic projection vector is AE  generated 

by the destination with complex shape must satisfy that 
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1

lim
n

D

i
n

i

P

n
 




     (9) 

where ( ) Agrad   E . 

Adding pedestrian to space with destination, if 

pedestrian's  probability projection vector is PAE  and  

destinations'  probability projection vector is DAE  at the 

point A , the probability projection vector of the coincident  
probability projection space generated by the pedestrian and 

destinations is PA DAE E  at the point A . 

Then for a planar space with a pedestrian without 
subjective consciousness at point P  and a point destination 
D  without any environmental conditions, the probability 
projection space generated by them is 

2

2 2

1
,

2
AA E



  
      

  

AD PA

AD PA
 whose diagram is as 

Fig. 6. 

In order to accurately describe the movement of 
pedestrians in real environment, we need to integrate the 
probabilistic projection space models of pedestrian with and 
destinations and obstacles. 

Depending on the properties of the probabilistic 
projection space, the probabilistic projection vectors 
generated by the destination and pedestrians will be affected 
by obstacles. Assuming the pedestrian is at the point P , the 
destination is D  and obstacle is S , then  the probabilistic 

projection space generated by the pedestrian, destination and 
obstacle must satisfy Eq. 3, Eq. 4, Eq. 5 and Eq. 6. 

Similarly in this way, we can apply the pedestrian model 
based on the theory of probability field and probabilistic 
projection space to the realistic scene for analysis of 
pedestrian movement law. Next section, I will validate the 
practicability and accuracy of the model to predict the 
destinations of pedestrians through the  realistic scene 
experiments. 

IV. PREDICTION EXPERIMENTS OF THE PEDESTRIANS 

A. Prediction Experiment of Pedestrians' Destinations in a 

Cinema 

Based on the theory of probabilistic projection space, we 
can utilize the model of probabilistic projection space to 
predict the pedestrians' destinations according to the 
positions of pedestrians. 

In order to predict the pedestrians' destinations, we could 
give a theorem of conditional probability as Theorem 5 
based on Theorem 2. 

Theorem 5. For probability fields 1 1( , )Z U F  and 

2 2( , )Z U F   with arbitrary projection rules, let event X  be 

that the value of probability field 1 1( , )Z U F  is on region 

1 1A U  and event Y  be that the value of probability field  

2 2( , )Z U F  is on region 2 2A U . The projection of region 

1A  on 2U  is 1B  and the projection of region 2A  on 1U   is 

2B . Then, the relationship of conditional probability is as 

1 2 1 2

1 1

1 2 1 2

2 2

1 2

1 2

1 2

1 2

( ) ( )

( | )
( ) ( )

( ) ( )

( | )
( ) ( )

x A B x B A

x A x B

x A B x B A

x A x B

F x F x

Y X
F x F x

F x F x

X Y
F x F x

   

 

   

 




 




  



 

 

 

 

P

P

 (10) 

Based on Theorem 5, we can research a simple example. 

Example 1. It can be assumed that the possible 
destination of pedestrian is a circle with radius 2R , the 
starting point of pedestrian is the origin of coordinates and 
the coordinate of pedestrians on a circle with the origin as the 

center and radius of R  are ( cos , sin )R R  . The diagram is 

as Fig. 7. 

 
 

Fig. 7. Diagram of the space with a 

circle destination. 

Fig. 8. Diagram of cinema 

passageway with three viewing 

halls. 

When the pedestrian destination coordinate is 

1 1(2 cos ,2 sin )R R  , the probability density of the 

pedestrian's probability field on the circle with radius R  at 

point ( cos , sin )R R   is 
 

1

1

2 cos( )

5 4cos( )R

 

  

 

 
. According 

to Eq. 10, we can obtain that the probability of pedestrian's 

destination is  1 1(2 cos ,2 sin ) | ( cos , sin )P R R R R      

 
1

1

2 cos( )

5 4cos( )R

 

  

 

 
. 

Ex. 1 has explained the idea of predicting pedestrian’s 
destination through the pedestrian's location based on the 
model of probabilistic projection space. Thus, we can design 
experiments depending on this idea. 
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Fig. 9. Diagram of statistical 

probability of each cross-sections 

in the experiments of cinema. 

Fig. 10. Diagram of statistical 

probability of cross-sections 

17x m   and 7x m   in 

the experiments of cinema. 

I conducted experiments to verify the feasibility of the 
model in predicting the destinations of pedestrians at the 
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passage of a cinema. By recording the videos and extracting 
pedestrian coordinates from the videos, I carried out the 
experiments and got the walking routes of several thousand 
individual pedestrians long before the opening of each movie 
so that the pedestrians' walking will not be affected by other 
pedestrians. During the dates of experiments, the cinema 
only opened three viewing halls and the diagram of its 
passageway is as Fig. 8. In Fig. 8, the entrance of the 

passageway is at point ( 20 ,0)P m   and the entrances of 

the three viewing halls are respectively 1 ( 5 , 2.5 )D m m  , 

2 (0,0)D   and 3 ( 5 , 2.5 )D m m   . I intercepted seven 

cross-sections 19x m  , 17x m  , 15x m  , 13x m  , 

11x m  , 9x m  , 7x m  , and then I recorded the 

longitudinal coordinate data of the pedestrians passing 
through the cross-sections. The statistical data is as Fig. 9. 

In order to observe the law easily, we can put the same 
order of magnitude of diagrams together as Fig. 10 and Fig. 
11.  With the statistical probability of each cross-section, we 
can predict the probability of pedestrians entering each 
viewing hall based on Theorem 5 through the iterative 
extraction of parameters, and the predicted results are as 
Table I and Fig. 12 to Fig. 15 where the real ratios of 

pedestrians in each viewing hall are 1( ) 0.2137D P , 

2( ) 0.4968D P and 3( ) 0.2895D P .  

TABLE I.  THE RESULTS OF PREDICTION FOR THE EXPERIMENTS OF CINEMA WITH THREE DESTINATIONS. 

Destination Reality 19x m    17x m   15x m   13x m   11x m   9x m   7x m   

1D  hall 0.2137 0.1683 0.1692 0.1803 0.1929 0.2016 0.2063 0.2093 

2D  hall 0.4968 0.5125 0.5147 0.5144 0.5134 0.5083 0.5100 0.4994 

3D  hall 0.2895 0.3192 0.3161 0.3053 0.2937 0.2901 0.2837 0.2913 
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Fig. 11. Diagram of statistical 

probability of cross-sections 

15x m  , 13x m  , 

11x m   and 9x m   in the 

experiments of cinema. 

Fig. 12. Diagram of predicted 

probability of pedestrians' 

destinations. 
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Fig. 13. Diagram of predicted 

probability of pedestrians to 1D  

hall. 

Fig. 14. Diagram of predicted 

probability of pedestrians to 2D  

hall. 
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Fig. 15. Diagram of predicted 

probability of pedestrians to 3D  

hall. 

Fig. 16. Sum of relative error 

between the predicted result and 

realistic result of three destinations. 

From the results of Table I and Fig. 12 to Fig. 15, it can 
be known that the error between the predicted results and the 

real results is less than 5% . The predicted results according 

to the cross-section 19x m   can reach a high accuracy. As 

the cross-section approaches the destinations, the accuracy of 
the prediction becomes higher and higher. And for the cross-
section 7x m  , the error between the predicted results and 

the real results is less than is less than 0.5% . In order to 

visualize the trend of error, we can obtain the relationship 
between relative error and cross-sections as Fig. 16. 

The results of Fig. 16 reiterated that the closer the cross-
section is to the destination, the more accurate the 
predictions are. And the range of the sum of relative error is 

in the (0.88%,9.08%) , which shows that accuracy of the 

model based on the probabilistic projection space is as high 
as 90% 99% . This accuracy shows that our model 

proposed in the paper can more accurately restore the 
realistic path of pedestrians in the environment without 
interference of other pedestrian. The experiments have 
verified the feasibility, practicability, accuracy and 
superiority of the model proposed in the paper, which shows 
that the model can be used as a basic model for further 
research of pedestrian dynamic. In the follow-up research, 
we would like to add the velocity vector of pedestrian motion 
to predict pedestrians' destinations, which may improve the 
prediction accuracy and make the prediction through a cross-
section far from the destination also achieve high accuracy. 

B. Prediction Experiment of Pedestrians' Destinations in an 

Airport 

In order to illustrate the practicability of the model for 
prediction of the pedestrians' destination in the airport, I 
conducted an observation experiment on the passageway of 
an airport. The diagram of the scene is as Fig. 17. 

In Fig. 17, there are two directions that pedestrians can 
choose. Thus, we can regard the corner of the two directions 

as two destinations 1D  and 2D . Through the measurement, 

we can get that ( 15 ,0)P m  , 1 (0,2.5 )D m  and 

2 (0, 2.5 )D m  . By recording the videos and extracting the 

pedestrians’ coordinates from the videos, I carried out the 
experiments and got the walking routes of several thousand 
individual pedestrians. Similar to the experiments in Section 
IV-A, I interpreted four cross-sections 12x m  , 9x m  , 
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6x m  , 3x m   and recorded the coordinates of the 

pedestrians on the cross-sections, where the statistical results 
are as Fig. 18. 

 

Fig. 17. Diagram of airport with two 

destinations. 
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Fig. 18. Diagram of the statistical 

probability of each cross-section in 

the experiments of airport. 

In order to observe the law easily, we can put the same 
order of magnitude of diagrams together as Fig. 19. With the 
statistical probability of each cross-section, we can predict 
the probability of pedestrians entering each direction based 
on Theorem 5 through the iterative extraction of parameters, 
and the predicted results are as Table II, Fig. 20 and Fig. 21 
where the real ratios of pedestrians in each viewing hall are 

1( ) 0.3947D P  and 2( ) 0.6053D P . Then, we can get the 

sum of relative error between predicted results and the 
realistic results as Fig. 22, where the closer the cross-section 
is to the destination, the more accurate the predictions are.  

TABLE II.  THE RESULTS OF PREDICTION FOR THE EXPERIMENTS OF CINEMA WITH THREE DESTINATIONS. 

Destination Reality 12x m    9x m   6x m   3x m   

1D  direction 0.3947 0.3569 0.3795 0.3824 0.3900 

2D  direction 0.6053 0.6431 0.6205 0.6176 0.6100 
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Fig. 19. Diagram of statistical 

probability of the cross-sections 

9x m   and 6x m   in the 

experiments of airport. 

Fig. 20. Diagram of predicted 

probability of pedestrians to 1D  

direction in the experiments of 

airport. 
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Fig. 21. Diagram of predicted 

probability of pedestrians to 2D  

direction in the experiments of 

airport. 

Fig. 22. Sum of relative error 

between the predicted result and 

realistic result in the experiments of 

airport. 

The results of the experiments not only verify the 
practicability and feasibility in prediction of the pedestrians’ 
destination again, but also illustrate the applicability of the 
model presented in this paper in transportation hub such as 
airport. 

V. CONCLUSION 

This paper describes the probability law of pedestrian 
movement based on the theory of probability field and 
probability projection space. The theory of probabilistic 

projection space is helpful to describe the influence of 
pedestrian's psychological and environmental factors on their 
movement, which is s conducive to our management of 
pedestrian movement. Based on the theory of probabilistic 
projection space, this paper presents a probabilistic 
calculation model for pedestrians' movement in realistic 
scenes with obstacles and destinations. In the paper, I also 
propose a method to predict the destination of the pedestrian 
based on the theory of probabilistic projection space. 
Through  experiments, I verified the  feasibility and accuracy 
of the model in prediction of the pedestrians' destinations. 
The accurate prediction of pedestrians' destinations is of 
great guiding significance for pedestrian guidance,  safety 
control of pedestrian, as well as building structure and layout 
of large-scale transport hub. The theory and ideas in this 
paper are also helpful to establish a complete model of 
pedestrian stochastic dynamics, which has far-reaching 
significance for the development of pedestrian dynamics. 
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